作者: Xingxuan Huang,高级应用工程师
Xinyu Liang,产品应用部高级经理
Chuan Shi,应用工程师
ADI公司
摘要
对于需要数千安培大电流的应用来说,具有极快动态响应的稳压器(VR)是非常合宜的。本文介绍基于变压器的稳压器,其采用跨电感电压调节器(TLVR)结构,设计用于在负载瞬变期间实现极快响应。采用TLVR结构的基于变压器的稳压器克服了传统TLVR结构的缺点,提供很大的设计灵活性和极快的瞬态响应,因而输出电容和解决方案尺寸更小,系统成本更低。文中提供了详细的实验结果和案例研究,以展示采用TLVR结构的基于变压器的稳压器具备的综合优势。
(资料图)
简介
如今,随着多相稳压器用于为CPU、GPU、ASIC等各种微处理器供电,其重要性与日俱增。近年来,这些微处理器的功率需求一直在急剧增加,特别是在电信和一些新兴应用中,如加密货币挖矿和自动驾驶系统。因此,微处理器需要更高摆率的更大电流。这就要求稳压器在负载瞬变期间具有更快的动态响应,以满足输出电压纹波要求。从系统尺寸的角度来看,极快的动态响应可减小所需的输出电容并缩小输出电容的尺寸,因而非常有吸引力。此外,更小且更少的输出电容有利于降低系统成本。本文将介绍一种基于变压器的稳压器解决方案,它采用TLVR结构,旨在实现极快的负载瞬态响应,并大幅缩减输出电容的尺寸和成本。在基于变压器的稳压器解决方案中引入TLVR结构后,TLVR结构的传统挑战可以很容易地解决。
本文将详细说明如何设计和实现,并通过基于实际应用的案例研究展示其综合优势。还应注意的是,本文中的设计和实现细节目前正在申请专利。
TLVR结构能够有效加速多相稳压器负载瞬变期间的动态响应1,2,3。如图1所示,TLVR结构用TLVR电感取代了传统多相稳压器中的输出电感。TLVR电感可以被视为一个1:1变压器,它具有一个初级绕组和一个次级绕组。所有TLVR电感的耦合是通过连接所有TLVR电感的次级绕组来实现的。TLVR电感副边的电流ILC由所有不同相位的控制信号决定。由于耦合效应,一旦稳压器的一个相位的占空比改变以响应负载瞬变,那么所有相位的输出电流可以同时斜坡上升或下降。这就是TLVR结构能够实现出色负载瞬变性能的原因。
基于变压器的稳压器
基于变压器的稳压器一直是各种微处理器的有竞争力的电源解决方案。基于变压器的稳压器配备了降压变压器,具有很高且灵活的降压比、简单紧凑的结构和高效率。与无变压器的多相稳压器相比,基于变压器的稳压器允许更高的输入电压,从而为简化稳压器设计和实现更高效率开辟了一个全新的世界。
图2显示了基于变压器的稳压器的一个代表性示例的电路图。该稳压器电路具有一个降压变压器,其副边上有两个次级绕组和一个电流倍增器结构。可以设计更多的次级绕组来实现更高的输出电流和功率密度,并且副边上不需要额外的控制信号。通过适当的控制电路和策略,图2中的多个示例稳压器电路可以很容易地并联起来,以便为各种高性能微处理器提供所需的电流。因此,本文通篇以图2所示的稳压器电路为例。
image001.png
图1.(a)无TLVR结构的传统多相稳压器的电路图,(b)采用TLVR结构的多相稳压器的电路图
image002.png
图2.一个基于变压器的稳压器示例的电路图
TLVR结构在基于变压器的稳压器中的优势
TLVR结构可以显著加速没有任何降压变压器的稳压器在负载瞬变期间的动态响应,这点已经得到了很好的证明。然而,这种出色的动态性能伴随着许多挑战1,2,3。在没有任何降压变压器的情况下,无变压器稳压器通常以低占空比工作,TLVR电感的原边和副边均施加高电压。TLVR电感副边的高伏秒导致TLVR电感副边存在高环流,并在稳态工作期间产生额外的功率损耗。因此,如图1b所示,应添加电感LC以限制TLVR电感次级绕组中的环流1。额外的电感会进一步增加系统损耗和成本。
在基于变压器的稳压器中引入TLVR结构后,TLVR结构带来的挑战可以顺利化解。TLVR结构与降压变压器相结合时,由于主变压器的高降压比,TLVR结构的缺点变得不那么明显。同时,耦合效应推动所有相位的电流在负载瞬变期间同步响应,因此仍然可以实现极快的动态响应。由于降压变压器,施加到TLVR电感的电压变得更低,从而降低电感损耗。TLVR电感副边所需的附加电感可以低得多。事实上,可以利用寄生电感来消除附加电感,这样附加电感带来的额外损耗和成本也就不存在。此外,与TLVR电感和附加电感相关的绝缘问题也不再是问题。
采用灵活TLVR结构的基于变压器的稳压器
在采用TLVR结构的基于变压器的稳压器中,电路中的所有输出电感都被TLVR电感取代。此外,当在基于变压器的稳压器中应用TLVR结构时,有两类方案可以实现,这为此结构的实施提供了很大的灵活性。图3以图2所示的两个并联稳压器模块为例,显示了这两类实现的电路图。图3a中的实现称为串联连接,因为TLVR电感的所有次级绕组都是串联。图3b所示的另一种实现称为串并联连接。在模块1中,L11和L12的次级绕组串联连接,然后与串联连接的L13和L14的次级绕组并联。模块1中TLVR电感次级绕组的这种连接最终与模块2中的对应连接串联,如图3b所示。类似地,当两个以上的基于变压器的稳压器模块并联连接时,可以将图3所示的TLVR结构实现两次。
设计和实现上增强的灵活性并不会增加控制的复杂性。采用TLVR结构的基于变压器的稳压器的两种实现采用相同的控制方案。这里以三个模块并联的基于变压器的稳压器为例来介绍控制方案。在不同稳压器模块的控制信号之间插入相移。模块1和模块2之间插入的相移为60°,模块2和模块3的控制信号之间插入60°的相移。如果有N个模块并联,则两个相邻模块之间插入的相移为180°/N。
基于所提出的控制方案,可以推导出施加到所有TLVR电感的电压。图4总结了两个模块并联的基于变压器的稳压器中所有TLVR电感的电压波形。由于图3中的两种实施方式具有相同的控制信号,因此电感电压波形也相同。还可以观察到,L11和L13具有相同的电压波形,L12和L14也是如此。这些电感电压波形有效地解释了为什么图3b中的串并联连接是合法的。TLVR电感副边的电流Isec具有高频纹波,其频率为主降压变压器原边中的MOSFET开关频率的4倍。当N (N >2)个模块并联时,Isec的电流纹波将处于更高的频率(2N×开关频率),并且Isec的幅度可能进一步降低。因此,所提出的相移控制方案不仅能够减小输出电压纹波,而且可以有效抑制Isec的纹波,从而降低TLVR电感副边的传导损耗。
此外,采用TLVR结构的基于变压器的稳压器中不需要额外的电感。与额外电感相关的额外成本和损耗也就不存在,因此系统的效率和成本大大受益。由于变压器降压比很高(n很小),因此与采用TLVR结构的无变压器稳压器相比,TLVR电感的电压显著降低。所以,没有必要在TLVR电感的副边引入额外补偿电感Lc来抑制电流纹波。有关TLVR电感电压的详细信息可参见图4。在这种情况下,电路中的寄生电感和TLVR电感的漏感在TLVR电感副边的电流(Isec)整形中起着关键作用。为了进一步提高负载瞬变期间的动态性能,降低TLVR电感副边的漏感和寄生电感很重要。
image003.png
图3.两个并联的采用TLVR结构的基于变压器的稳压器模块的两种实现:(a)串联连接,(b)串并联连接
image004.png
图4.采用TLVR结构的基于变压器的稳压器模块(两个模块并联)中TLVR电感的电压和次级电流波形
原型和实验结果
我们设计并构建了采用TLVR结构的基于变压器的稳压器模块的两种实现方案,包括串联版本和串并联版本。图5a显示了典型TLVR电感的3D模型。构建的模块原型参见图5b。两个版本的尺寸与无TLVR结构的版本相同。换句话说,无论实施串联连接还是串并联连接,采用TLVR电感以实现TLVR结构都不会增加稳压器模块的尺寸。
使用所构建的原型成功展示了采用TLVR结构的基于变压器的稳压器的极快负载瞬变性能。实验设置由两个并联运行的稳压器模块组成,如图5b所示。TLVR电感的副边没有安装额外电感。负载瞬变在20 A至170 A之间,摆率为125 A/µs。图6所示的基线比较以串并联版本为例,清楚地展示了采用TLVR结构的基于变压器的稳压器的出色负载瞬变响应。为了进行公平比较,无TLVR结构的情况是通过断开TLVR电感副边连接来实现的。当负载电流从20 A上升到170 A时,采用TLVR结构的基于变压器的稳压器可以更快速地调节输出电压,峰峰值电压纹波要低得多。
经过进一步改进,采用TLVR结构的基于变压器的稳压器可实现极快的负载瞬变响应。详细的瞬变波形如图7所示。在从20 A到170 A的相同瞬变下,得益于TLVR结构带来的极快响应,峰峰值输出电压纹波仅为23.7 mV。采用TLVR结构大大加快了动态响应,峰峰值输出电压纹波因此降低62%。测得的115 kHz的高控制带宽也证明了TLVR结构能够实现极快的负载瞬变响应。详细比较总结在表1中。
image005.jpg
图5.(a) TLVR电感的3D模型,(b)采用TLVR结构的两个基于变压器的稳压器原型在演示板上并联
表1.采用TLVR结构和无TLVR结构的基于变压器的稳压器的动态响应比较
结构 | 采用TLVR结构 | 无TLVR结构
X 关闭 推荐内容 |